
University of Amsterdam, Faculty of Science

Optimizing engagement in online news

Andrei Oghină

M
as

te
ro

fS
cie

nc
e

Th
es

is

Optimizing engagement in online news

Master of Science Thesis

For the degree of Master of Science in Artificial Intelligence at
University of Amsterdam

Andrei Oghină

Supervisor: prof. Maarten de Rijke
Mentors: dr. Manos Tsagkias, Maximiliano Neustadt

February 20, 2013

Faculty of Science · University of Amsterdam

The work in this thesis was supported by Hyves B.V. Their cooperation is hereby gratefully
acknowledged.

Copyright c© Graduate School of Informatics (GSI)
All rights reserved.

Abstract

As the internet is becoming the primary source of information, news websites are compet-
ing to provide the best stories. Each day, dozens of high-impact events make the headlines.
In the same time, mobile browsing is exploding, bringing the news paper to a previously
unthinkable small size. Given this informational avalanche and shrinking formats, it becomes
crucial to develop methods that quickly detect the most engaging stories.

In this master thesis, I apply reinforcement learning methods to detect engaging stories
in real time, on a medium-sized news website. I then cluster visitors based on their click
histories and evaluate their age and gender stereotyping. I investigate how this insight can
be applied for news personalization. Finally, I adapt and test the methods on a mobile news
website, to study the impact of the mobile setting on news engagement optimization.

Experimental results show how a content-agnostic reinforcement learning method can
achieve click-through rate lifts of up to 92% over a random (or most recent article) baseline,
when applied to the top story position of a news website. Due to skewed user demographics
and other limitations, user segmentation doesn’t improve performance on the tested website.
However, clustering based on click histories outline a young female user group with distinctive
interests. The tested methods prove to be medium-invariant: when applied on a mobile
website, they boost a 108% lift in click-through rate comparing to a random serving scheme,
and a 20% increase when comparing to an informed manual approach, where members of an
editorial team place good articles in the top story position.

Through this work, I highlight the potential of content-agnostic, online reinforcement
learning methods for solving engagement optimization problems, and encourage further re-
search and new applications based on such methods.

Master of Science Thesis Andrei Oghină

ii

Andrei Oghină Master of Science Thesis

Table of Contents

Acknowledgements v

1 Introduction 1
1-1 Contribution . 2
1-2 Overview . 3

2 Related Work 5
2-1 Collaborative and content-based filtering . 5
2-2 Online models . 7

3 Detecting engaging stories 9
3-1 Methods . 9

3-1-1 Multi-armed bandits . 9
3-1-2 Evaluation and tuning . 12
3-1-3 Existing methods . 13

3-2 Experimental setup . 15
3-2-1 Hyves Nu&Straks . 15
3-2-2 Architecture . 16
3-2-3 Data collection . 17

3-3 Results and analysis . 18
3-3-1 Tuning . 18
3-3-2 Baseline . 20
3-3-3 ε-greedy and UCB . 22

Master of Science Thesis Andrei Oghină

iv Table of Contents

4 Clustering visitors and news personalization 25
4-1 Methods . 25

4-1-1 Clustering . 25
4-1-2 Evaluation . 26
4-1-3 Segmented UCB . 27

4-2 Experimental setup . 28
4-2-1 User demographics . 28
4-2-2 Active users and click history overview 29
4-2-3 Limitations . 30

4-3 Results and analysis . 31
4-3-1 Segmented UCB based on median age 31
4-3-2 Clustering . 32
4-3-3 Segmented UCB based on clusters insight 37

5 Detecting engaging stories in a mobile setting 41
5-1 Methods . 41
5-2 Experimental setup . 42

5-2-1 Telegraaf Privé . 42
5-2-2 Architecture . 43
5-2-3 Data collection . 45

5-3 Results and analysis . 45

6 Conclusions and future work 49

Bibliography 51

Andrei Oghină Master of Science Thesis

Acknowledgements

I thank my supervisor, prof. Maarten de Rijke, and my academic mentor, dr. Manos
Tsagkias, for giving me the freedom to explore such an interesting topic, and for their kind
guidance during the writing of this thesis.

I’m grateful to Maximiliano Neustadt from Hyves, for sparking the idea of this work, and
for his continuing support throughout my internship.

University of Amsterdam Andrei Oghină

February 20, 2013

Master of Science Thesis Andrei Oghină

vi Acknowledgements

Andrei Oghină Master of Science Thesis

To my late grandparents: Elena & Gheorghe Vranciu, Angela & Bogdan Oghină.

Chapter 1

Introduction

The internet is clearly emerging as a predominant source of information. It has long
surpassed printed newspapers, and is currently closing in on television.1 As more people head
online for their daily informational intake, this transformation of the news landscape comes
with both unique challenges and opportunities.

Major online news outlets serve tens of millions of monthly visitors.2 When a new story
is published on the main page, its instant exposure is huge. Without the delay and practical
limitations of print, the number of potential stories is virtually unlimited. This can easily
lead to informational overload, since human attention span is relatively constant. Therefore,
the question is: how to pick the most informative and engaging stories?

News websites have been around for more than two decades. However, until recently,
they still shared a similar, manual publishing process with their printed counterparts. While
the details vary by publication, an editorial team is usually responsible with filtering news,
writing stories, and selecting which items appear on the main page. Most websites also have
a top story - a highlighted article which is the equivalent of the front page story featured by
traditional newspapers. This headline is usually hand-picked by the editorial team.

In online news, probably the most obvious gains are accessibility and recency, as users can
read stories instantly once they are published, from any place in the world. However, there
are other important advantages in this setting, two of which are particularly relevant for this
work. First, in the online environment, it is easy to monitor user behaviour in real-time,
for instance tracking which articles are clicked more often. Secondly, because web pages are
dynamic, content can be reordered and displayed in various ways. Moreover, personalization
is possible, by highlighting or ordering stories differently for individual users.

While most online news publishers still have a manual editorial process, some of the big
websites are making efforts to automatically optimize user engagement, taking advantage of
the online setting. Probably the most notable examples are Google News (Das et al., 2007)

1http://www.people-press.org/2012/09/27/in-changing-news-landscape-even-television-is-vulnerable/
2http://www.quantcast.com/cnn.com

Master of Science Thesis Andrei Oghină

http://www.people-press.org/2012/09/27/in-changing-news-landscape-even-television-is-vulnerable/
http://www.quantcast.com/cnn.com

2 Introduction

and Yahoo! News (Li et al., 2010), which both use automated personalization techniques.
While their approaches differ, there is a common ground in learning from user behaviour.

Despite the potentially significant impact on both user experience and commercial gain,
the work in this field is rather limited, for multiple reasons. For instance, Agarwal et al.
(2008) mention the technical and cultural challenges in convincing experienced editorial teams
to accept automated serving schemes, and the necessity of conducting tests on live traffic for
statistical validity. Few companies have the resources, traffic and openness needed for such
research, and business information sensitivity prevents open data sets to become available.

More recently, mobile news consumption is exploding, with the percentage of Americans
who regularly get news on a mobile device doubling in two years, reaching 15%.3 The screen
size constrains of these small devices have already changed website design paradigms, and
make it even more important for news websites to pick the most engaging headlines.

1-1 Contribution

For this thesis, I have the opportunity to explore content optimization methods on live
traffic from the news section of the Hyves social network.4 To the best of my knowledge,
this is the first time such experiments are reported on a medium-sized news website. I hope
that my results can pave the way for openly available content optimization tools that can
benefit both online publishers and their readers. That’s why I report not only results, but
also architectural details on how to plug such algorithms on existing news platforms.

Based on a content-agnostic, behavioural approach, I use multi-armed bandit models to
detect which stories generate most engagement. For tuning, I devise a method to generate
artificial user interactions, to be used for offline evaluation. The goal is to maximize the
number of clicks on the top story. This also leads to higher user satisfaction, and ultimately
to an increase in user visits (Liu et al., 2010).

Since Hyves is a social network, I have access to user features such as age and gender. This
allows me to investigate the extent to which clicking behaviour can be stereotyped with gender
and age segmentation. I employ the results to attempt a novel approach to personalization,
combining click-based user clustering with multi-armed bandit models.

I am also given the chance to run experiments on a different, mobile news website. This
allows me to adapt the methods to a different setting, and gather valuable data on how the
constrains of the mobile world impact on the proposed serving schemes, and ultimately on
user behaviour.

I consider the following research questions:

1. Is click-based reinforcement learning a suitable method capable of lifting user engage-
ment, when applied to top story selection on a medium-sized news website?

2. Can top article clicking patterns be stereotyped using traditional gender and age seg-
mentation, and is this insight useful for achieving news personalization?

3http://www.people-press.org/2012/09/27/section-2-online-and-digital-news-2/
4http://hyves.nl

Andrei Oghină Master of Science Thesis

http://www.people-press.org/2012/09/27/section-2-online-and-digital-news-2/
http://hyves.nl

1-2 Overview 3

3. Are these methods applicable to a mobile news website, and do the particularities of a
mobile setting influence the performance of click-based reinforcement learning top story
selection methods?

1-2 Overview

This thesis is organized as follows. In Chapter 2, I present relevant related work, covering
the areas of recommendations, news filtering and personalization, click-based user clustering,
reinforcement learning and multi-armed bandits. In Chapter 3, I describe how the multi-
armed bandit problem can be used for modelling user engagement and selecting the best top
story on a news website. Then, in Chapter 4, I use cluster analysis to group users based on
their click histories, and apply this insight for news personalisation. To test how the methods
generalize to a different user setting, I apply them to a mobile website in Chapter 5, and
devise a platform than allows easy integration on virtually any news website. Finally, in
Chapter 6 I present my conclusions and discuss possible future work.

Master of Science Thesis Andrei Oghină

4 Introduction

Andrei Oghină Master of Science Thesis

Chapter 2

Related Work

News filtering and personalization is often formulated as a recommendation problem. As
opposed to traditional search, where users have a clear information need, in a recommendation
setting they come with a show me something interesting attitude (Das et al., 2007). As you
can imagine, there are endless possibilities to address such an open question, and an entire
new family of methods is required to cope with this broad mindset.

2-1 Collaborative and content-based filtering

One of the most successful and commonly used technologies for generating recommenda-
tions is collaborative filtering (Sarwar et al., 2001). It works by providing recommendations
based on the opinions of other like-minded users. Depending on the scenario, the users can
be shop customers that purchase products, film lovers that rate movies, or readers that click
on articles. Notice that all these settings are fundamentally similar, with users expressing
explicit (ratings) or implicit (clicks) opinions on some type of items.

The user-based collaborative filtering approach computes the similarity between users,
based on their past activities (similar movie ratings, or clicks on the same articles). After
finding the nearest neighbours of an active user, it combines their preferences to generate
recommendations. To address the scalability limitations of this method, Amazon has adopted
an item-centric approach (Linden et al., 2003), named item-based collaborative filtering. The
intuition is that the user would be interested in items similar to the ones liked (purchased,
clicked) earlier. A similar-items table is pre-computed offline, based on the users that have
clicked, liked or rated them. The resulting online performance is high, since the only required
operation is to retrieve and merge the most similar items, given a user’s profile.

The traditional collaborative filtering approach is widely successful, reportedly accounting
for 30% of Amazon’s revenue1, and a 200% increase in click-through rate for YouTube’s
"related videos", comparing to just showing popular items (Davidson et al., 2010). However,

1http://blog.kiwitobes.com/?p=58

Master of Science Thesis Andrei Oghină

http://blog.kiwitobes.com/?p=58

6 Related Work

the method assumes the item-set suffers minimal churn. This assumption holds well for online
shops, film websites or YouTube, where recommending an item which is a few months old is
typical. But this is not the case in online news, where one of the biggest challenges is the
dynamic article pool (Agarwal et al., 2008). An article has an average lifetime of just a few
hours. Moreover, even during this short period, its performance, in terms of click-through
rate, can change dramatically, an vary for different user groups. This makes the temporal
dynamics of interests, which has been previously studied in the context of movie ratings
(Koren, 2010), much more problematic for the news setting.

Das et al. (2007) describe an approach for generating recommendations for users of Google
News2. They use collaborative filtering, but acknowledge that the high item churn present
in the news setting makes the traditional approach unsuitable for the task. Instead, they
begin by clustering the users based on their click-histories. Once the users are clustered, the
recommendations are generated based on the number of clicks on each article, decayed by
time, of all users in the same cluster with the active user. They observe a 38% increase in
click-through rate for their best method, compared with a popularity-based baseline.

The collaborative-filtering approach to news personalization comes with an obvious lim-
itation: there’s no mechanism for new articles to get recommended. This is known as the
first-rater problem (Good et al., 1999). News recommendations are particularly sensitive to
this issue, due to the high item churn. The system has to wait for hours to collect enough
clicks from other parts of the website, to be able to recommend a new story. For this, it has to
model in the position bias (users tend to click more on articles displayed more prominently).
But what if the system doesn’t have access to clicks from other story placements?

Conceptually, Das et al. (2007) cluster the users based on the overlap of their click histories.
In practice, they use two probabilistic clustering techniques: PLSI (Hofmann, 2004) and
LSH (Indyk and Motwani, 1998). These methods are efficient and scalable, because they do
not require computing the similarities between all user pairs. There are various evaluation
measures to compare different clusterings, and Vinh et al. (2009) give a good overview of the
challenges and solutions for this task.

In their follow-up work, Liu et al. (2010) describe the drawbacks of collaborative filtering
applied to news, and propose a solution for improving the recommendations of Google News.
They adopt a hybrid method which combines collaborative filtering with content-based in-
formation filtering, one of the first approaches used for news filtering (Carreira et al., 2004).
Text classification is used to assign categories to each article, and then the topical preferences
of users are learned. The collaborative filtering and content-based scores are combined to
generate recommendations, allowing new articles to surface based solely on their topic rele-
vance for the active user. This hybrid method improves with 30% over the pure collaborative
filtering approach.

Content-based filtering can therefore sometimes improve performance, especially when
used in combination with collaborative filtering (Good et al., 1999), but it also makes the
system language-dependent and content-focused. Such an approach couldn’t be applied to
other domains, such as images, videos or music, making it less attractive. Even for news,
there are many signals that contribute to a story’s success, besides its textual content. For
instance, in our setting, the prominent image or video associated with each article plays an

2http://news.google.com/

Andrei Oghină Master of Science Thesis

http://news.google.com/

2-2 Online models 7

important role, as the content is usually quite short. Even when content is king, there is wide
variability in article performance sharing a common set of feature values, making it difficult
to build good models based solely on offline data (Agarwal et al., 2008). Motivated from these
findings, and because a content-based method has been already tested on the available setup,
I do not look into content-based methods.

2-2 Online models

To overcome the limitations of content-based methods and collaborative filtering, I chose
to take an alternative, content-agnostic approach that tracks article performance using online
models. More precisely, I plan to combine, for the first time, online models (Li et al., 2010)
with user clustering methods based on click histories (Das et al., 2007), in an attempt to
bridge the two recommendation approaches for serving medium-sized news websites. For
this, I take a closer look to modelling user behaviour in the context of online learning.

In recent years, researchers started to exploit the tremendous value of implicit feedback
coming from user interactions, such as clicks. Most of the attention is focused on utilizing
user feedback to improve document rankings. This family of methods is collectively known
as online learning to rank. For instance, Radlinski and Joachims (2007) propose an active
exploration technique for learning rankings of documents, based on search engine logs of
user behaviour. More recently, Hofmann et al. (2013) formulate the online learning to rank
problem as an exploration-exploitation dilemma and address it using listwise and pairwise
methods, which are known approaches for learning to rank (Liu, 2009). This research area
area nourishes from the valuable insights that user interactions provide.

Online models have also been applied for news recommendations. To the best of my
knowledge, the only known works on this topic come from Yahoo! Research (Agarwal et al.
(2008) and Li et al. (2010)). Being one of the biggest internet companies, Yahoo! (like Google)
affords to perform such research, especially since it powers the most visited portal of the web3.
In this work, I want to investigate and make it easy to use such methods for medium-sized
news websites. Li et al. (2010) frame the challenge as an exploration-exploitation dilemma
(like in Hofmann et al. (2013)) and propose a contextual bandit algorithm as a solution.
Before diving into the details, let me introduce a few key works from reinforcement learning.

Rooted in learning psychology (Minsky, 1954), reinforcement learning is an area of ma-
chine learning which studies how an agent should perform actions in order to maximize a
numerical reward (Sutton and Barto, 1998). Typically focusing on online performance, one
of the challenges of reinforcement learning is how to balance exploration and exploitation.
Exploration refers to taking actions that are known to give good rewards, while exploration is
needed to discover new and potentially better actions. The exploration-exploitation dilemma
is that neither exploitation nor exploration can be successful by its own. This trade-off has
been studied extensively through the multi-armed bandit problem.

The multi-armed bandit problem is defined as how to maximize the expected total reward
over a time period, when faced repeatedly with a choice that gives a reward from a stationary,
action-dependent probability distribution. Originally, it was named based on the analogy of

3http://www.alexa.com/topsites/countries/US

Master of Science Thesis Andrei Oghină

http://www.alexa.com/topsites/countries/US

8 Related Work

maximizing winnings when playing a number of slot machines (bandits). A very good analysis
of the problem is performed by Auer et al. (2002), who present efficient policies on how to
chose the next action based on past plays and observed rewards. One of the most basic policy
is to play randomly a small fraction of the time (random exploration), and the rest of the
time, play the current best performing action (greedy exploitation). This strategy is called
ε-greedy.

In our context, selecting an action is equivalent to picking which article to display to the
user, the reward being 1 or 0 depending on if the user clicks on the article. Agarwal et al.
(2009) explain the additional challenges for this setup, including the dynamic set of items,
article lifetime constrains, non-stationary click-through rates, and the delay in observing user
feedback, due to system performance constrains. They propose a Bayesian solution, which
improves learning performance with 35% against the ε-greedy bandit scheme, but achieves
similar performance for exploitation.

Finally, Li et al. (2010) propose a new contextual bandit algorithm based on upper con-
fidence bound, a method to balance exploration and exploitation efficiently. Context refers
to information about the users and articles, such as age, gender and article category. They
also introduce an offline evaluation platform based on previously recorded random traffic, and
their results show a 12.5% click-lift compared to a context-free bandit algorithm.

Because of the interactive nature of the problem, offline evaluation of bandit algorithms
can be frustratingly difficult (Li et al., 2010). Initial approaches were prohibitively complex
and came with multiple caveats (Langford et al., 2008). In their work, Li et al. (2010) propose
a much simpler and unbiased method to perform off-policy evaluation, with the constrain
that the logging policy chooses each article uniformly at random. In follow-up work, Li et al.
(2011) describe their evaluation framework in detail and provide theoretical guarantees such
as unbiasedness and accuracy.

Recent work lifts the constrain of having a random logging policy, using non-random
data for offline evaluation (Strehl et al., 2010). These evaluation methods, however, reject
the majority of logged data, because they skip all events that do not match the evaluated
policy. This is very wasteful, and can easily become a problem when data is not available in
abundance. For instance, the authors use 40 million recorded events (page views) collected
over just a few days to evaluate their methods. Such traffic volume is clearly infeasible to
capture by a medium-sized news website. Luckily for me, I was allowed to perform online
evaluation, so I didn’t have to worry about this problem.

This thesis differentiates from existing work in several ways. First, it uses pure content-
agnostic online models to detect engaging stories. To the best of my knowledge, only Agarwal
et al. (2008) and Li et al. (2010) take a similar route. As opposed to their work, which
focuses on optimizing engagement on Yahoo’s main page, this thesis focuses on the feasibility
of such methods when applied to medium-sized news websites. I cover both solutions for
easy integration of such algorithms with existing news platforms, and the challenges that
arise from working at smaller traffic scale. Having access to user demographics, I can provide
for the first time insight into how click-based user clustering matches segmentation based on
surface features (such as age and gender) for news story clicks. Moreover, for the first time
in known literature, I describe how such methods can be plugged to a mobile news website,
and investigate how the mobile setting affects their performance.

Andrei Oghină Master of Science Thesis

Chapter 3

Detecting engaging stories

The first step in my quest of optimizing user engagement on a medium-sized news website
is to quickly identify the engaging potential of new stories, after their publication. For this,
I apply content-agnostic reinforcement learning methods, and learn exclusively from user
interactions.

3-1 Methods

In this section, I describe the multi-armed bandit problem and how it can be applied to
detect engaging stories. I also discuss tuning, in the larger context of evaluation, which is
known to be difficult for this class of problems. Finally, I give a brief overview of the other
content optimization methods already in use at Hyves.

3-1-1 Multi-armed bandits

In a multi-armed bandit problem, the player is faced repeatedly with a choice among K
different options, and receives, after each choice, a numerical reward, based on the selected
action. The objective is to maximize the expected total reward. In order to do so, the player
has to keep a balance between exploring all possible actions to find the best ones, and choosing
the best known action at each point in time.

When applied to news story selection, the available choices, called actions (machines or
arms, in the bandit paradigm), are recent stories, from which the algorithm has to select one
to show the visitor. The reward may consist of a click (if the page view leads to a click, then
the reward is 1, otherwise it’s 0) on the displayed article. The expected reward is the article’s
click-through rate (CTR), defined as the division of the number of clicks on an article when
displayed in a certain position by the number of page views of that article in that position.
Thus, the player, which in this case is the article serving policy, has to pick articles for each
visitor, so that the total number of clicks is maximized.

Master of Science Thesis Andrei Oghină

10 Detecting engaging stories

Formally, A K-armed bandit problem is defined by a set of random variables Xa,n for
1 ≤ a ≤ K and n ≥ 1, where each a is the index of a gambling machine (one of the bandit’s
arms), and n the play index of the ath machine. That is, after each play of the ath machine,
the Xa,1, Xa,2, Xa,3... rewards (clicks) are observed, which are independent and identically
distributed according to an unknown law with unknown expectation µa (in the news setting,
the click-through rate).

The bandit problem generalizes to any scenario where different actions (originally, ma-
chines) are available, and yield different numerical outcomes (rewards), with the goal to
maximize the total reward across a number of successive plays, or trials. In the news setting
described here, these actions refer to selecting the next article to serve at each page view.
Hence, the articles are the actions, and the page views are the trials. Moving forward, I
will use the more general term action instead of machine, while plays and trials will be used
interchangeably.

A policy, or allocation strategy, is an algorithm A that chooses the next action to take (the
next article to serve, or machine to play), based on past plays and obtained rewards (Auer
et al., 2002).

The regret of a policy is defined as the expected loss of A, when compared to an omniscient
strategy that always plays the best action. If Ta(n) is the number of times A played action a
at trial n, then the regret RA(n) after n trials is:

RA(n) = µ∗n−
K∑
a=1

µaE[Ta(n)] (3-1)

Here, µ∗ is given by the action with the highest reward expectation. In our case, this
would be the highest click-through rate:

µ∗ = max
1≤a≤K

µa (3-2)

A well-known policy for the K-armed bandit problem is ε-greedy. This policy sets a small
value for ε, and plays with probability ε a random action (exploration), and with probability
1−ε the action with the highest current average reward (exploitation). Because of the constant
exploration probability ε, the regret increases linearly.

For the bandit problem, minimizing regret is key to improving performance. In the news
publishing setting, the importance of a small regret goes beyond immediate performance
(losing clicks). Serving random, potentially not engaging stories to visitors for the purpose
of exploration (finding out which story performs best), can have a negative impact on the
overall user experience, potentially decreasing the interest in the website.

Previous work proved that it is possible to achieve better, logarithmic growth of regret,
which is clearly preferable than a linear increase. Lai and Robbins (1985) presented policies
that play exponentially more often the best action, having, for any other suboptimal action
a:

E[Ta(n)] ≥ lnn
D(pa||p∗)

(3-3)

Andrei Oghină Master of Science Thesis

3-1 Methods 11

Here, D(pa||p∗) is the Kullback-Leiber divergence between the reward density of action a,
and the reward density of the action with highest reward, µ∗ – hence, a constant. As a conse-
quence, regret grows at least logarithmically, so these policies satisfy a regret asymptotically
bounded by logarithm of n, which was also proved to be optimal.

The ε-greedy policy can be improved to achieve logarithmic regret bound, by decreasing ε
with a certain rate (for instance, 1/n). This effectively reduces exploration, as the confidence
in the expected reward becomes higher. The new policy is called εn-greedy.

Another allocation policy that achieves logarithmic regret is upper confidence bound (UCB)
(Auer et al., 2002). It computes a score for each bandit by summing two terms: the current
average reward, and a confidence bound for the average reward. Then, it picks the action
with the highest score:

an = argmax
a

(
µa +

√
2 lnn
Ta(n)

)
(3-4)

Here, µa is the average reward (the expectation) for action a, Ta(n) is the number of times
action a has been selected, while n is the total number of trials. This effectively results in a
smarter way to balance exploration and exploitation, by exploring more the arms that have
been played less, and thus have a bigger confidence bound.

The methods described so far are designed for a scenario where the bandits have an
unknown, yet determined expectation. However, in the news setting, one of the challenges
is the non-stationary click-through rate. This implies that the expectation is permanently
changing, and the bandit method has to take this into account. Moreover, new articles are
constantly added to the pool, while old ones get dropped.

In general, in this non-stationary setting, there isn’t one action that has the highest
reward expectation across all trials. Instead, at each trial, there can be a different action that
yields the best reward (Li et al., 2010). By consequence, after expanding the expectations,
Equation 3-1 becomes:

RA(n) = E
[
n∑
t=1

rt,a∗
t

]
− E

[
n∑
t=1

rt,at

]
(3-5)

Here, a∗t is the best action at trial t, n is the current trial, and rt,at is the reward observed
by playing action a at trial t. The assumption that the confidence in the expected rewards
of all actions increases as the number of plays increases doesn’t hold anymore, because new
actions become available during the play. This makes the εn-greedy policy impractical, as it
reduces exploration progressively across the entire news items pool.

The upper confidence bound (UCB) algorithm is more appropriate for exploring in a
non-stationary expectation setting, because it computes a confidence bound for each arm
independently. However, since articles come and go and the algorithm runs continuously, the
total number of plays n becomes less relevant, so the confidence is defined using a constant
parameter α, which is subject to tuning. Equation 3-4 becomes:

an = argmax
a

(
µa + α√

Ta(n)

)
(3-6)

Master of Science Thesis Andrei Oghină

12 Detecting engaging stories

Therefore, at each step, the action is selected based on the current expectation (click-
through rate) µa, and the confidence bound, which is dependent on the constant α and the
number of plays for action a (the number of times the article was served), Ta(n).

3-1-2 Evaluation and tuning

To evaluate different serving schemes, I am allowed to run tests on live traffic. This is
uncommon, as news publishers are reluctant to experiment on their visitors, fearing this could
have a negative impact on user experience. Besides, there are logistic constrains that generally
prevent easy deployment of experimental changes to a mature codebase.

Live evaluation is relatively straight forward. First, we need a serving scheme in place,
which is the algorithm that selects which article to display as top story, for each page view.
After deploying a serving scheme online, all page views and clicks generated by that particular
scheme are recorded. Since the reward consists of clicks, the total number of clicks in a given
time frame represents the evaluation measure. To compensate for variations in traffic volume,
it is common to use the click-through rate instead. To this end, the average click-through
rates are computed, for certain periods of time (for instance, daily), by dividing the total
number of clicks, to the total number of page views.

Two serving schemes are used to produce baselines: the first serves the last ten published
articles randomly, and the second one always serves the latest published article. Evaluation is
also performed against existing content optimization methods deployed at Hyves, described
in Section (3-1-3).

Recall the parameter α from Equation 3-6, which needs to be optimized. While I am
allowed to run tests on a live setting, tuning the parameter online would be infeasible, because
it would simply take too much time to run sequential tests, of at least several days each, with
a lot of different values for α, to figure out the optimal value.

For optimizing α, I resort to an offline evaluation framework introduced by (Li et al.,
2010). The goal is to evaluate a serving algorithm, hereby referred to as policy π. To do this
based on a stream of logged events - each consisting of an action (page view of an article as top
story) and an observed reward (click) - an evaluator steps through the logged events and only
keeps the ones for which the selected article matches π, otherwise dropping the unmatched
event. The evaluator is therefore a simulation algorithm, which filters out logged events that
don’t match the evaluated policy and, by doing this, mimics how the policy would interact
with the real world. The evaluator is described in Algorithm 3-1.

Andrei Oghină Master of Science Thesis

3-1 Methods 13

Algorithm 3-1 Policy_Evaluator(T, π, S)
Input: T > 0, policy π, stream of events

1: h0 ← φ {Initialize history}
2: R0 ← 0 {Initialize total payoff}
3: for t = 1→ T do
4: repeat
5: a, ra ← get_next_event()
6: until π(ht−1) = a
7: ht ← concatenate(ht−1, (a, ra))
8: Rt ← Rt−1 + ra
9: end for

10: return RT /T

Here, T is the total number of trials, π is the policy, S is the sequence of logged events, ht
is the sequence of matched events at trial t and get_next_event() retrieves the next logged
action a, together with its observed reward ra. The authors prove that, if the stream of
actions S are collected using a random policy, then any unknown click distribution D can be
evaluated correctly using Algorithm 3-1:

Pr
Policy_Evaluator(T,π,S)

(hT) = Pr
π,D

(hT) (3-7)

Offline evaluation presents itself with a different problem: it wastes a lot of data, by
discarding all logged events that don’t match the evaluated policy. Regardless of that policy,
it is easy to see that each event is retained with probability 1/K, where K is the number
of available actions. In the news case, the number of actions is the number of articles that
the algorithm chooses from (recent articles), which is around 20. That means that only 1/20
of all logged user interactions are retained. In our case, there is clearly not enough data to
estimate click-through rates for the articles, after discarding so many events. In the case of
(Li et al., 2010), they log millions of events during a few days interval, while I was able to log
no more than a few tens of thousands.

Because of the data wastefulness of offline evaluation on logged events, I resort to another
technique to tune α: I generate artificial user interactions, based on a simple model. After
picking 10 random articles and computing their click-through rates based on their online
performance, I generate a long list of artificial user interactions (page views, and sequential
clicks). This model is a crude simplification of the live setting, as it has stationary expectations
and a fixed number of actions (articles). However, I hypothesise that it is good enough to
estimate α, and I will compare the results with the ones of (Li et al., 2010) to validate this
hypothesis, in Section 3-3-1.

3-1-3 Existing methods

Hyves is already using two content optimization methods for picking the top stories: a
content-agnostic classification-based approach, and a content-based approach. At the time
of my work, both methods were running in parallel, boosting similar performance. The

Master of Science Thesis Andrei Oghină

14 Detecting engaging stories

classification-based method was developed first and tested against a manual approach, where
editors were selecting the top story, showing an improvement of 12% in click-through rate.
Describing these methods in detail is beyond the scope of this work, so I provide only a
high-level overview for each of them.

The classification-based approach uses user segments, based on features such as age and
gender. Then, using all interactions with articles, a naive Bayes classifier determines a score
for each topic/segment pair. Each visitor is presented with the most appealing topic for its
segment. Interactions are predominantly clicks, but also include comments and votes given
on articles. Each (user, topic) interaction pair is considered once, regardless of its type.

The content-based approach performs user modelling based on textual features. For each
new article, a set of features is extracted, including the raw content, Wikipedia concepts (Meij
et al., 2012) and related categories extracted from DBpedia1. The user modelling is performed
again using all user interactions. An individual model is built for each user, containing the
most frequent features she interacts with, extracted from articles based on the click history.
Also, models are built for each user segment, to be used as a fall-off model for users that
don’t have enough interactions. The top story is selected by querying a Lucene2 search index
for most related recent stories, based on the user model.

Both these methods suffer from several limitations, mainly because they are based an
all user article interactions, regardless of their context. For starters, they don’t take into
account the position bias. Articles which are highlighted as top stories naturally trigger more
engagement from all user segments. This could lead to self-fulfilling prophecies.

A limitation that makes the evaluation against these methods troublesome is that they
suffer from contagion effects, when ran in parallel with other methods. For instance, the
classification-based approach scores the articles for each user segment based on all user inter-
actions, including the ones resulting from other serving schemes.

The bandit methods I developed are designed to learn independently of other serving
schemes that may run in parallel, so the data I report is unbiased. Although I will report the
performance of the other two methods as well, keep in mind they may influence each other,
and can be influenced by the bandits serving scheme as well.

It is important to note that these existing methods use significantly more information than
the methods I’m testing, as input for learning the best stories to highlight. That’s because
they make use of all user interactions, including clicks on articles across the entire website.
In contrast, the bandit serving schemes base their learning only on the clicks performed on
the top story position, performed by users that fall within a designated test group.

Finally, for these existing methods, the editors also have the option to override the algo-
rithm and pin an article to the top story position. This provides additional advantage for
these methods, as the editors have insight on current events of public interest, and a bias
which is impossible to control.

1http://dbpedia.org/About
2http://lucene.apache.org/core/

Andrei Oghină Master of Science Thesis

http://dbpedia.org/About
http://lucene.apache.org/core/

3-2 Experimental setup 15

3-2 Experimental setup

In this section, I present the news website used to perform the experiments. I then describe
how the data collection is performed, including the testing architecture used to isolate the
experimental setup from the actual product.

3-2-1 Hyves Nu&Straks

At the time of this writing, Nu&Straks (English: "now and later") is the news section of
the Hyves website. Founded in 2004, Hyves competes with Facebook as the social network of
choice for many Dutch people. In May 2010, Hyves had around 10 million accounts, which
corresponds to two thirds of the Dutch population3.

Figure 3-1 shows how a portion of the Nu&Straks main page looks like for a regular
visitor. The top story position is highlighted with a red rectangle. The serving schemes
control which article is shown in this position. Logged in users are presented with a very
similar interface, but the articles may differ. My experiments are performed on a subset of
logged in users, which I name the bandit cohort. In terms of magnitude, this segment generates
tens of thousands of page views and thousands of top story clicks each day.

Figure 3-1: Hyves Nu&Straks main page for regular visitors (top story is highlighted).

3http://en.wikipedia.org/wiki/Hyves

Master of Science Thesis Andrei Oghină

http://en.wikipedia.org/wiki/Hyves

16 Detecting engaging stories

The news stories on Nu&Straks cover a wide range of aspects. It is important to note
that the articles are grouped in so-called topics, such as "Halloween", or "Alles over Justin
Bieber" (English: "All about Justin Bieber"). The presentation logic and interaction logging
are performed at topic level. Based on convention, for any topic, the latest article associated
with that topic is presented to the user. Therefore, these experiments are also performed at
topic granularity. Topics are narrow, with many of them containing a single article. However,
in certain cases, like follow-ups on the same story, multiple articles are grouped together
within the same topic. Human editors publish about 30 articles each day, and create a new
topic whenever they find suitable.

3-2-2 Architecture

In order to test various serving schemes, I need a flexible, yet robust architecture that
allows easy and safe deployment of new logic to the live setting. Working directly with the
Hyves codebase would be impractical, as I would have to adhere to the development and
deployment procedures in use, such as having weekly deployments. Instead, I implement an
external service, and perform minimal modifications to the Hyves codebase. The website is
programmed to perform an API request to the external bandit service to retrieve the top
story identifier. If the reply doesn’t come in time, a fall-off scheme is used to pick the top
story. The architecture is sketched in Figure 3-2. I intentionally leave out most of the details
regarding the Hyves architecture, as it is not relevant for this work.

Figure 3-2: Simplified architecture of the experimental setup, outlining how the Hyves infras-
tructure interacts with the bandit server.

The website already has in place two logging schemes. However, the first one doesn’t
store page views (only interactions such as clicks, comments), and doesn’t store the article
position at click-time - there’s no way to determine if the click was performed while the article
was at the top story position. The second logging method uses an external reporting service,
and retrieving data in real time is not possible. Therefore, an additional logging scheme is

Andrei Oghină Master of Science Thesis

3-2 Experimental setup 17

implemented on the main website. All main page views and top story clicks (collectively
named interactions), together with additional information such as a user identifier, are stored
in a database, for the entire bandit cohort. The bandit service has real time access to this
data, and uses the information to decide which topic to serve.

3-2-3 Data collection

Using the logged page views and clicks, the bandit service reconstructs events, in the sense
of Algorithm 3-1. Recall these events, or plays, consist of (action, reward) pairs. In this case,
the action is the selected story (therefore, all main page views are events), and the reward
depends on the existence of a subsequent click. To this end, all clicks are mapped to the
latest previous page view generated by the same user. This produces a list of events (page
views), having either reward 1 (if a click followed) or reward 0 (if no click followed).

Figure 3-3: User flow diagram, including segmentation and data collection: a visitor sees a top
story based on its assigned bucket, an event that may receive a reward if the user then clicks on
that story.

For all experiments, the bandit cohort is equally divided in two buckets: the learning
bucket and the deployment bucket. The user flow diagram is presented in Figure 3-3 and
describes the interaction of a user with the top story position on the main page of Nu&Straks.
Depending on the bucket the user falls into, she is served a different topic as top story. For the
deployment bucket, the best topic is always displayed, which is recomputed every 10 minutes
based on the logged events. It is called the greedy topic, and is computed simply as the topic
with the highest click-though rate in the past 12 hours. For the ε-greedy algorithm, the
learning bucket is used for random exploration. In the case of the upper confidence bound,
the UCB algorithm runs in the learning bucket.

Based on the reconstructed events, the bandit schemes can compute expectations (click-
through rates) in real time, and decide which topic to serve next. These expectations are
computed based on a certain time frame, which is set to the last 12 hours.

Master of Science Thesis Andrei Oghină

18 Detecting engaging stories

Note that, for the purpose of these experiments, I use equal-sized learning and deployment
buckets. Given the available traffic volume, it is necessary to have a large-enough learning
bucket to estimate click-through rates. To get a better understanding, I perform a simple
analysis. Topics for the top story position are always picked from the last 10 published
articles, and there are about 30 new articles published each day. Let’s say we need at least
10 clicks per article to estimate it’s click-through rate. Given a random exploration policy,
this means that the system needs at least 300 top-story clicks per day, only for exploration.
Considering a click-through rate of 0.1, this means that at least 3000 page views per day
have to be dedicated to exploring article performance. This is a bare minimum, and more
is usually needed to track click-through rate decay, and compensate for publishing patterns
(articles are published in bursts, not being equally distributed throughout the day).

If the method where to be deployed in an environment of higher traffic, the deployment
bucket could be set to be (considerably) larger than the learning bucket. This would lead to
better overall results, as the exploration, which drags the click-through rate down, happens
only in the learning bucket.

3-3 Results and analysis

In this section, I describe how tuning is performed based on artificial data, and what
baselines are used to evaluate the algorithms under consideration. Then, I evaluate two bandit
serving schemes, which are deployed on the Nu&Straks section of Hyves, to detect the most
engaging news stories. I report on daily click-through rates and relative total click-through
rate improvement, and discuss the results and their implications.

3-3-1 Tuning

To tune the α parameter from Equation 3-6, I use the method described in Section (3-
1-2). I aim to have the same order of magnitude for the two terms of the summation - the
click-through rate µa, and the confidence bound α√

Ta(n)
- so they can both play a role in the

selection process. Internal traffic metrics recorded before these experiments express a range
for the click-through rate µa and number of views per article Ta(n). Based on these metrics, I
chose the [0, 1.6] interval for α as sufficiently large to cover variations, and split it in 30 parts.
For each point, 30 runs of the policy evaluator are performed on the synthetic interactions,
which are shuffled before each run. At each step, the average click-through rate is computed,
and a random policy is run in parallel on the same data, to get a better insight into UCB’s
relative performance. The results are presented in Figure 3-4.

Andrei Oghină Master of Science Thesis

3-3 Results and analysis 19

Figure 3-4: Tuning parameter α of the upper confidence bound equation.

While the click-through rate is computed over 30 runs, we can still notice some sharp
variations. This may be due to very close values for the topic click-through rates. Never-
theless, we can observe a maximum at 0.4. Therefore, I will use this value for α. While (Li
et al., 2010) tune the α parameter using live data, their graphs have a similar shape and the
same maximum, which confirms the hypothesis that the simplifications of this artificial setup
provide a good-enough environment for the tuning task.

Next, I plot how the ε-greedy and UCB algorithms perform against a random policy, and
an omniscient policy (that knows beforehand which is the topic with the highest click-through
rate and always serves that topic). Recall this setup uses a synthetic dataset with static click-
through rates and a constant article pool, so this plot in Figure 3-5 serves only to get an
initial impression on policy performance.

Master of Science Thesis Andrei Oghină

20 Detecting engaging stories

Figure 3-5: Policy performance comparison performed on artificial data.

As expected, UCB performs best (after omniscient), followed by ε-greedy. Somewhat
surprising is that the best topic is picket at most close to 50% of the time, when one would
expect that an algorithm should eventually learn which is the topic with the highest click-
through rate, and pick it much more often than the others. The explanation for this is the
very close values between click-through rates of high-performing stories. In this case, the
top two stories have click-through rates of 0.114 and 0.099, so there’s a difference of 0.015.
As it results from Equation 3-6, regardless of the number of interactions, UCB will continue
to serve the second best-performing story almost as often as best performing one. This is
particularly useful for adapting to changes in click-through rates, as they decay over time.

3-3-2 Baseline

A baseline is used as a starting point for comparisons in order to perform evaluation.
The new serving schemes run in parallel with the existing methods used by Hyves. However,
due to the issues discussed in Section (3-1-3), these existing methods do not provide reliable
baselines. Nevertheless, I will report their performance as well. However, to get a better,
independent baseline, I run two simple serving algorithms: a random serving scheme, and a
recency-based scheme.

First, a random algorithm picks the top story from the last 10 published articles. This
serving scheme is used for a user segment for 7 days. The overall daily click-through rate is
plotted in Figure 3-6. The average click-through rate is 0.066.

Andrei Oghină Master of Science Thesis

3-3 Results and analysis 21

Figure 3-6: Click-through rate of a random serving scheme.

Next, I test the recency-based algorithm. For this, I run in parallel a random serving
scheme and a recency-based serving scheme, which always serves as top story the last pub-
lished article. The results are plotted in Figure 3-7.

Figure 3-7: Click-through rate comparison of random vs. most recent serving schemes.

We can see that both algorithms produce the same average click-through rate: 0.067. This
implies the expected click-through rate on a top story position is 0.067, when no intelligent
serving scheme is used, and only the website layout and the overall article quality (subjective
to the representative user demographics) is taken into account. Ideally, I would be able

Master of Science Thesis Andrei Oghină

22 Detecting engaging stories

to run these baseline serving schemes in parallel when testing each new method, but this
is not possible due to data sparsity. Since the click-through rates are invariant to traffic
fluctuations, I pick this value (0.067) as a static click-through rate baseline for all further
experiments, which will be labelled as Baseline in all plots.

3-3-3 ε-greedy and UCB

It is time to put the two serving schemes which are suitable for the news setting to the
test. I start with running the ε-greedy algorithm for 5 days. The bandits cohort is split in
two buckets: the learning bucket and the deployment bucket, as described in Section (3-2-3).
The click-through rates are plotted in Figure 3-8.

Figure 3-8: Click-through rate performance of the ε-greedy algorithm, compared with the static
baseline and the existing Bayes and Content methods.

Here, ε-greedy refers to the overall algorithm performance, ε-greedy-l tracks the perfor-
mance obtained in the learning bucket, while ε-greedy-d tracks the deployment bucket. As
previously described, for this method, the learning bucket runs a random exploration algo-
rithm. Therefore, as expected, the average click-through rate here matches the static baseline.

The ε-greedy serving scheme clearly outperforms the static baseline, providing a 34%
increase in click-through rate. Recall that, for more traffic, we could use a smaller learning
bucket and a bigger deployment bucket (decreasing ε), pushing the total click-through rate
even higher. In that line of thinking, notice that, in the deployment bucket, the click-through
rate increase reaches 74%.

For reasons beyond my control, for this time interval, the two serving schemes used by
Hyves perform worse than the static baseline, making a comparison against them useless.

Next, I test the upper confidence bound (UCB) algorithm. For another five-days interval,
the algorithm is run in the learning bucket, while the deployment bucket is used to always

Andrei Oghină Master of Science Thesis

3-3 Results and analysis 23

serve the best current topic. The results are plotted in Figure 3-9.

Figure 3-9: Click-through rate performance of the UCB algorithm,compared with the static
baseline and the existing Bayes and Content methods.

Applying the UCB algorithm leads to a big improvement. First, the average click-through
rate (0.129) provides a 92% lift over the static baseline, and a 45% increase over the best-
performing Hyves serving scheme (segmentation using naive Bayes). As expected, the im-
provements are more modest in the learning bucket (72% against Rand, 29% against Bayes)
than in the deployment bucket (120% against Rand, 66% against Bayes). However, the differ-
ence between the learning and deployment buckets is smaller than for the ε-greedy algorithm,
which proves the efficiency of using a smarter exploration method.

It is important to note that the values from the deployment bucket are also higher than
those of the deployment bucket of the ε-greedy algorithm. This implies that the smarter
learning of UCB also leads to better, quicker detection of the best performing stories. This
was to be expected. For ε-greedy, a new story has to wait until a random serving scheme
picks it for a sufficient number of times to get a click-through rate estimate. For UCB, a
new story gets instant preference for exploration, since the second term in Equation 3-6, the
confidence bound α√

Ta(n)
, is much higher than for older stories, which have a larger value of

the served page views Ta(n). This naturally leads to a quick detection of engaging stories.

Master of Science Thesis Andrei Oghină

24 Detecting engaging stories

Andrei Oghină Master of Science Thesis

Chapter 4

Clustering visitors and news
personalization

So far I looked at detecting engaging topics for all users. However, there may be groups of
users who share interests, and using this information can help further improve the performance
of the bandit methods. A natural next step is to cluster users based on their click histories. I
investigate which methods work best, and how similar they are with two different approaches
based on surface features, such as age and gender. I then analyse how this insight can be
used for news personalization, in conjunction with multi-armed bandit methods.

4-1 Methods

In this section, I describe how to cluster users based on their click histories, how to evaluate
different clustering results, and how a segmented upper confidence bound algorithm can be
used for personalized news recommendations.

4-1-1 Clustering

For clustering, each user u is represented in the N -dimensional feature space Fu. Each
feature represents a topic, and in each of the N dimensions there is a binary value determining
if the user interacted (clicked) with the topic or not. The goal is to group together users based
on shared features.

Agglomerative hierarchical clustering is a method that starts with each point in its own
cluster and builds a hierarchy by repetitively merging pairs of clusters. Three parts play a
role in this process: a distance metric, the method used to decide which clusters to merge
(called a linkage criterion), and a cutoff threshold which determines when to stop merging.

As a distance metric, the Jaccard coefficient is used. The Jaccard coefficient, defined in
Equation 4-1, computes how similar two sets are, which is exactly what we are interested

Master of Science Thesis Andrei Oghină

26 Clustering visitors and news personalization

in when comparing click histories. The clustering methods I use compute the coefficient
explicitly, based on the feature representations Fi and Fj of users ui and uj :

J(ui, uj) = |Fi ∪ Fj |
|Fi ∩ Fj |

(4-1)

I test several clustering methods: single, complete, average and weighted. These methods
describe different ways to compute the distance between two clusters. The single method
uses the distance between the closest points (nearest point algorithm), while the complete
method uses the distance between the farthest points (farthest point algorithm). Average
and weighted both use all pairs of distances between points in each cluster. Weighted, also
known as WPGMA (Weighted Pair Group Method with Arithmetic Mean), computes the
distance between clusters as a simple average of all pairs. Average uses UPGMA (Unweighed
Pair Group Method with Arithmetic Mean), having the averages weighted by the number of
elements in each cluster at each step:

D(A,B) = 1
|A||B|

∑
a∈A

∑
b∈B

d(a, b) (4-2)

Here, d(a, b) refers to the distance between two points, as determined using the preferred
metric. In this case, the metric used is the Jaccard coefficient.

For each data set and method, I plot dendrograms, which are tree diagrams used to visu-
alise the arrangement of clusters. Using the dendrograms, you can see how well a clustering
method works, for a specific data set. If most points appear to be outliers, and the clustering
is performed by adding points one after the other in one big cluster, than the clustering has
little value. However, if we observe balanced clusters growing bigger and bigger, than those
clusters are potentially useful.

The result of hierarchical clustering is a linkage matrix that defines the sequence of merging
clusters, up until one cluster remains. From this structure, we can form flat clusters - assign
points (users) to a cluster - based on a threshold. In this case, the criterion used is the
distance between points: forming flat clusters so that the original observations in each flat
cluster have no greater a certain cophenetic distance. The cophenetic distance of two objects
is a measure of how similar those two objects have to be in order to be grouped into the same
cluster. The threshold is between 0 and 1 and represents the cutoff place.

4-1-2 Evaluation

Clustering evaluation is used to assess the quality of a clustering method. In external
evaluation, the clusters are evaluated against data that was not used for performing the
clustering task. In our case, we don’t have a gold standard for validation. Instead, recall we
want to investigate to which extent clicking behaviour can be stereotyped with gender and
age segmentation. Therefore, I evaluate two different clustering methods based on surface
features (age and gender) against clustering performed based on click histories.

Recall I have access to surface user features, such as age and gender. To this end, I perform
two feature-based clusterings: one based on the median age, and, after gaining insight into

Andrei Oghină Master of Science Thesis

4-1 Methods 27

how click histories tend to group together, another one based on age and gender. I then test
which of these two clusterings is closer to the click-based clustering.

Evaluation is performed using the Rand Index, a measure of the similarity between two
data clusterings. This measure is computed based on counting, for all pairs of points, how
many are in the same cluster, in both clusterings:

RI = TP + TN

TP + FP + FN + TN
(4-3)

Here, TP represents the true positives, TN the true negatives, FP the false positives and
FN the false negatives.

The age-based clustering is performed using the users’ median age: 14. The median age is
chosen for practical reasons. Due to data sparsity, we can barely run tests for two equal-sized
clusters. Any segmentation that contains less than half the number of users doesn’t generate
enough clicks to learn a dedicated policy online. The clustering based on age and gender
splits the users in two groups: the first contains females up to 28 years old, and the second
segment contains everybody else.

There are alternatives to the Rand Index. For instance, the Adjusted Rand Index is the
corrected-for-chance version of the Rand Index. However, to get a clear picture on how a
random clustering would perform, I prefer to explicitly compute the Rand-index of the click-
history against a random clustering, where users are assigned to one of two clusters based on
their numerical identifiers (if they are even or odd).

4-1-3 Segmented UCB

To optimize engagement on a news website, detecting which stories generate more interac-
tions in general is a good first step. The next step is news personalization - as different users
may find different stories to be more engaging than others. How to achieve this efficiently is
still an open problem.

I capitalize on the insight gained from analyzing the users’ click histories and attempt
to use it to perform news personalization. For this, I adapt the K-armed bandit algorithms
to the user’s context, which is a set of user features. As described by (Li et al., 2010), a
contextual-bandit algorithm A proceeds in discrete trials t = 1, 2, 3..., such that, at each step:

1. The algorithm observes user ut, a set of actions (articles) At, and the feature vector xt,a
called the context, which summarises information about the user ut, and possibly the
action a.

2. Based on the rewards from previous trials, it chooses an arm at ∈ At and receives a
reward of rt,at .

3. A improves its strategy with the new observation (xt,at , at, rt,at).

Apart from adding the user context to the decision logic, a contextual-bandit algorithm
has the same behaviour as the K-armed bandit algorithms, with the same n-trial regret as
defined in Equation 3-5.

Master of Science Thesis Andrei Oghină

28 Clustering visitors and news personalization

The upper confidence bound algorithm was shown to have a logarithmic bound on regret
and is suitable for the news article setting, as described in Section (3-1-1). For the contextual
bandit approach, I plan to run this algorithm in parallel for different user groups, or segments.
The resulting approach is called a segmented upper confidence bound algorithm (segmented
UCB). Segmented UCB runs a copy of UCB in each user segment. If the segments truly
represent users with different interests, this leads to different policies, and different engaging
stories detected for each group. However, this also divides the available learning data to the
number of segments used, thus making the learning process potentially slower or less accurate.
These limitations are discussed in more detail in Section (4-2-3).

The first experiment based on segmented UCB uses two balanced clusters, where users
are grouped based on their median age (14). A copy of the UCB algorithm is ran for each
group. After gaining more insight into how users behave based on how their click histories
are clustered, another segmentation is performed, based on both age and gender. Because of
the constrain of having two equally sized clusters, the first group will contain females up to
28 years old, and the second segment will contain everybody else.

4-2 Experimental setup

In this section, I give an overview of the user demographics of the Nu&Straks section of
Hyves, I describe how the user clustering is performed, and present the limitations associated
with the segmented upper confidence bound approach.

4-2-1 User demographics

Nu&Straks news are geared toward a younger audience. In Figure 4-1, you can see the user
demographics for this website section, as extracted from a random sample of recent visitors.
Females dominate males at a ratio of roughly 2:1 overall, and, as the figure shows, the ratio
is visibly higher in the 10 to 15 years old age group. The average age is 22, while the median
age is 14.

Andrei Oghină Master of Science Thesis

4-2 Experimental setup 29

Figure 4-1: Age and gender distribution of the Nu&Straks users.

This skewed distribution makes it hard to construct useful user segments, since most users
already fall within a small age group (preteen and teenage girls). As we will see in Section (4-
2-3), we are limited to build at most two user groups, which have to be balanced. Therefore,
one group will naturally contain a lot of young girls, and the other will contain the long tail
of other users, which vary a lot in age, and so presumably their interests vary too.

4-2-2 Active users and click history overview

First, I select a set of user candidates. The goal is to pick users that are active, from
the bandits cohort. For this, all users that fall within the bandits cohort, and that have at
least one click on the top story during a certain interval are considered. I extract a sets of
candidates from a 4 day period (between October 12 and October 16, 2012), resulting in
userset-4-days.

For the click histories, I initially consider clicks on top stories within a one week period,
between October 17 and October 24, 2012. However, there are too few clicks per user (on
the top story) in this set. Based on the bandits cohort, the long-tailed click distribution over
this one week period is plotted in Figure 4-2. Even active users don’t click more than a few
times per week on the top position. Therefore, I have to make use of a different click log.

Master of Science Thesis Andrei Oghină

30 Clustering visitors and news personalization

Figure 4-2: The distribution of the number of clicks per user on the top story position, over a
one week period, as scatterplot (left) and in log-log scale (right).

For Nu&Straks, Hyves stores all interactions performed by all users on topics, regardless
on the topic’s position at click time. An interaction may consist of a click, a comment or
a follow action on a topic. They are stored as tuples, containing the user id, the topic id,
the interaction type and the date/time. Interactions with the same topic are merged and
considered once, regardless of the type of interaction, or the number of interactions a user
had with it (e.g. repeated clicks on the same topic).

Using this comprehensive interaction log, I consider all clicks performed in the previous
3 months before October 19, 2012, and prune users that clicked less than 3 times in this
interval. To build the final data set, based on userset-4-days, an additional condition is set:
I consider only users with at least 7 interactions in the past 3 months.

The userset-4-days set contains 2,673 distinct users (that clicked at least once in the 4
days interval). For the click history, there are 2,051 (out of 2,673) users that pass the 7 clicks
minimal history threshold. These users generated a total of 126,703 interactions during the
three months interval, bringing the average to 61.77 interactions per user, which is roughly
20 interactions per active user, per month.

Next, features are selected for clustering the active users. A feature consists of a topic
identifier. The numerical identifiers of all topics that have at least two interactions are
considered as feature candidates, totalling 1,433 features.

4-2-3 Limitations

A segmented upper confidence bound algorithm uses predefined user groups, or segments,
and learns different policies for each group. This implies keeping track of rewards on a per-
group basis. If the groups indeed reflect different user preferences, then the resulting policies
will differ, and the overall performance can be improved. However, note that such an approach
also needs proportionally more data for learning. For instance, if we split the users in two
equal groups, the segmented upper confidence bound algorithm needs double the amount of
page views and clicks to achieve the same confidence levels as it’s non-contextual counterpart.
This turns out to be a major drawback.

Andrei Oghină Master of Science Thesis

4-3 Results and analysis 31

Based on the available volumes of traffic, I can at most split the users in two balanced
clusters, and run a learning algorithm for each of these two user segments. The algorithms
will have half the amount of data, in terms of page views and clicks, available for learning.
Anything less than that would simply be too little to make use of.

Ideally, we would like to split the users in segments based on the groups that result
after performing click-based clustering, and run a learning algorithm for each such group.
Unfortunately, due to the data sparsity described above, this is not feasible. Therefore, I
have to make use of the insight gained from click-based clustering, to make a decision on
what user segments (based on surface features) would work better, and then test the validity
of this decision.

4-3 Results and analysis

The goal is to investigate ways to achieve personalization for top story selection, while
increasing performance. First, I run a segmented UCB algorithm based on median age,
and test how it affects the overall click-through rate. Next, the focus shifts to user clustering
based on click histories, and how these clusters evaluate against segmentation based on surface
features. Finally, a segmented UCB algorithm is tested on a new user segmentation, which is
based on the insight gained from user clustering.

4-3-1 Segmented UCB based on median age

Before diving into user clustering, I ran a first experiment where users are grouped based
on their median age (14), and a copy of the UCB algorithm selects what story to show within
each group. The results are presented in Figure 4-3.

Figure 4-3: Segmented UCB based on age

Master of Science Thesis Andrei Oghină

32 Clustering visitors and news personalization

This segmented UCB approach achieves an overall click-through rate of 0.11, which repre-
sents an 64% improvement over the baseline and a 35% improvement over the best performing
method ran in the same period (Content). However, recall that running an unsegmented UCB
algorithm achieved an expected click-through rate of 0.129 (giving a 92% lift over the static
baseline). This means that this segmentation approach fails to improve over the unsegmented
variant, and actually performs worse. I discuss possible reasons for this later on in Section
4-3-3, after performing this experiment again using a different user segmentation.

4-3-2 Clustering

I first plot dendrograms for the tested linkage methods, as it can be seen in Figure 4-4.
For readability, the dendrograms are plotted only for distances between 0.5 and 1 (the y axis),
starting with the 20 biggest clusters, in terms of number of elements. On the X axis are the
actual clusters, where the number in brackets refers to the number of clusters associated to
that line (lines with no number represent a single cluster).

Figure 4-4: Dendrograms for different linkage methods.

As expected, the average and weighted linkage methods perform best, with a clear, reason-
ably balanced hierarchy emerging in the dendrograms. The other two methods, complete and

Andrei Oghină Master of Science Thesis

4-3 Results and analysis 33

single linkage, which group clusters based on the distance between only two points (nearest
or farthest), perform poorly. For single linkage, the typical pattern of a single mega-cluster
emerges, while for complete, the method fails to cluster the biggest clusters together.

Next, I focus on the most promising linkage methods: average and weighted. For these, I
build flat clusters using various cutoff thresholds. The higher the cutoff threshold, the bigger
the clusters and the smaller their number. However, as clusters get bigger, the similarity
between their members also decreases.

To get a better understanding on how different cutoff thresholds influence the clusters
formation, I plot all users from the four biggest clusters. Each cluster is color-coded. Recall
that I have access to user surface features. Therefore, I plot each point in an age-gender
graph. This way, we can investigate to which extent the biggest clusters map to gender and
age segments. To get a better insight, I compute the average age (Age) and gender ratios
(F/M) for each of the four biggest clusters, and display the number of elements in each of
these clusters (N). For the average method, the plots are presented in Figure 4-5.

Master of Science Thesis Andrei Oghină

34 Clustering visitors and news personalization

Figure 4-5: Distribution of users over age and gender in the four biggest clusters, computed
using average linkage, at different cutoff thresholds.

Here, we can see how the top clusters get bigger as the cutoff threshold increases. Even-
tually, one mega-cluster eats away the other clusters (see plot for the threshold 0.96). For
values 0.9 and 0.92, there’s a background cluster that holds users representative of the overall
website demographics (average ages 25 and 21, gender ratios 2.27 and 2.96), and then there
is a distinct cluster of young females (average age 14, gender ratio 14.97 and 5.91). This

Andrei Oghină Master of Science Thesis

4-3 Results and analysis 35

suggests that these young females have indeed distinct interests in news articles, that differ
somewhat from the background demographics. However, note that the website already has a
skewed audience of young females, as is was shown in Section 4-2-1.

Next, I present the clustering plots for the weighted linkage method (Figure 4-6).

Figure 4-6: Distribution of users over age and gender in the four biggest clusters, computed
using weighted linkage, at different cutoff thresholds.

Master of Science Thesis Andrei Oghină

36 Clustering visitors and news personalization

Table 4-1: Clustering evaluation results, showing the Rand Index values at different cutoff
thresholds (T), which result in different number of clusters (N) and of users in the top four
biggest clusters (U).

Random vs. click-based Age-based vs. click-based

T N U All clusters Top 4 All clusters Top 4

Average

0.7 1938 41 0.484 0.490 0.464 0.484
0.8 1298 201 0.484 0.499 0.484 0.539
0.9 235 965 0.487 0.497 0.474 0.507

0.92 128 1283 0.492 0.499 0.482 0.501
0.94 53 1581 0.497 0.501 0.487 0.493
0.96 19 1982 0.511 0.512 0.526 0.529

Weighted

0.7 1938 35 0.484 0.497 0.464 0.598
0.8 1298 165 0.484 0.496 0.464 0.552
0.9 270 714 0.486 0.498 0.482 0.610

0.92 156 934 0.487 0.498 0.493 0.590
0.94 73 1173 0.490 0.501 0.506 0.583
0.96 29 1557 0.494 0.500 0.541 0.603

There is a similar trend here as for the average method. In the begging, the cutoff threshold
is too small to form reasonable sized clusters. As the threshold increases, the clusters become
bigger, and more balanced than for the average linkage. For weights 0.9 and higher, we can
clearly see that the top two clusters represent a background cluster, and a young females
cluster. The higher contrast is achieved at threshold 0.92, where where the young females
cluster has a gender ratio of 10:1, and an average age of 13. Moreover, here there is also a
distinctive young boys cluster (albeit smaller), with a gender ratio of 1:10 and an average age
of 13.

These plots suggest that, even for such skewed background demographics, there is a dis-
tinct group of young females that generate a distinct clicking patterns than the background
group. This is encouraging, as it gives weight to the hypothesis that gender and age play a
significant role in click patterns.

Next, I set to investigate which of these clusterings are most similar to an age-based
clustering. For this, I perform clustering evaluation using the Rand Index. I use two different
clustering approaches, one by grouping users at random in two clusters, and the other by
grouping users based on their median age, in two clusters. Then, I evaluate the results of
these two methods against the click-based clustering result obtained at the previous step.
These results are displayed in Table 4-1.

Here, T refers to the threshold, N to the number of clusters, and U to the number of

Andrei Oghină Master of Science Thesis

4-3 Results and analysis 37

users in the top four clusters. The number express Rand Index values.

When evaluation is performed for all users, the age-based clustering doesn’t improve over
the random baseline, for none of the linkage method/cutoff combinations. This may come as
a surprise, but all click-based clustering methods produce a much higher number of clusters
than 2 (the smallest is 19). Therefore, users are spread across many clusters.

If we limit ourselves to evaluating only the users that fall within the top four biggest
clusters (for the click history based approach), results do get better. In accordance with the
conclusions drawn from Figure 4-6, the weighted linkage method with higher cutoff thresholds
(0.92, 0.94, 0.96) performs best.

The somewhat unexpected low correlation with age based segmentation has multiple
causes. First, if we look closely at the plots in Figure 4-5 and Figure 4-6, we see that
the background cluster contains a comparable number of elements in the same segment as the
young females cluster. Therefore, there is a lot of overlap between clusters in terms of age
and gender distribution. Secondly, as previously mentioned, these methods produce many
clusters, and only merge the last 20 or so at very high thresholds, suggesting a high level of
data sparsity (many users sit in their own cluster until late in the process due to a distinctive
click history).

What we gain from this cluster analysis is the insight that a large subgroup from the
young female audience has distinctive interests patterns. Next, I will use this insight to test if
a segmented UCB approach performs better using a two segments approach, where the first
segment consists of young females.

4-3-3 Segmented UCB based on clusters insight

The cluster analysis suggests the most distinctive user segment comprise of young females.
Given this insight, and keeping in mind the limitations described in Section (4-2-3), a seg-
mented UCB algorithm is run for a new set of two balanced user segments: the first group
contains females up to 28 years old, and the second segment contains everybody else. The
results are plotted in Figure 4-7.

Master of Science Thesis Andrei Oghină

38 Clustering visitors and news personalization

Figure 4-7: Segmented UCB based on age and gender

For these new segments, UCB achieves an average click-through rate of 0.118, improving
with 76% over the static baseline, and with 49% over the best alternative method running in
the same interval (Bayes). This represents a slightly better performance than the age-based
segmentation, but it still underperforms when comparing with the unsegmented UCB.

The fact that this new segmentation still fails to improve over the unsegmented UCB
doesn’t come as a surprise. As it results from the cluster analysis, there is a lot of age
and gender overlap between the click-based clusters. The Rand Index clustering evaluation
measure shows that, when considering all clusters, the age-based clustering doesn’t improve
over the random baseline, when comparing with the click-based clustering. The data is also
sparse, with many users having short click histories, which many times don’t match well with
others, and the website has a pre-existing skewed audience of young females, as described in
Section 4-2-1.

Another reason why segmented UCB doesn’t improve results is the balanced clusters
limitation. Because I can construct at most two balanced clusters, the first group has to
contain females up to 28 years old, while the cluster analysis outlines a much younger female
group with distinctive preferences. If I were to make a group of females of up to 16 years old,
the clusters would become unbalanced, and there wouldn’t be enough data to learn in the
smaller segment.

The reasoning above only explains the risk of not getting a performance boost when
doing segmented UCB. To explain why segmentation actually hurts performance, recall the
segmented UCB algorithm runs a copy of UCB for each user segment. This means the amount
of data needed to achieve the same learning rate multiplies with the number of segments,
assuming they are equal. Even when having just two segments, cutting the learning rate in
half is a big burden for the overall learning performance.

Besides taking more time to learn if a new article has top story potential, not having
enough clicks can also lead the algorithm to fail detecting good stories entirely. As the average

Andrei Oghină Master of Science Thesis

4-3 Results and analysis 39

number of available page views per article decreases, especially during publishing hours, some
articles may end up getting very limited exposure, that would not trigger a sufficient number
of clicks to detect their potential. This explains why performance decreases not only in the
learning bucket, but also in the deployment bucket.

Master of Science Thesis Andrei Oghină

40 Clustering visitors and news personalization

Andrei Oghină Master of Science Thesis

Chapter 5

Detecting engaging stories in a mobile
setting

In this chapter, I apply the user engagement optimization methods described in Chapter 3
to a mobile setting. The main goal is to investigate if their performance holds in this different
setting, as the information structure and screen size can significantly affect the navigation
behaviour and perceptions of mobile internet users (Chae and Kim, 2004). While doing this,
I also build a platform than allows easy integration of the upper confidence bound serving
algorithm on virtually any web application, including news websites, through an application
programming interface (API).

5-1 Methods

The serving scheme used is the upper confidence bound algorithm described in Section
3-1-1. Recall that UCB computes a score for each available article by summing the current
click-through rate estimate with the value of a confidence bound, based on Equation 3-6, and
always serves the article with the highest score. Parameter α is used to control the ratio of
exploration versus exploitation: the greater α is, the higher is the weight of the confidence
bound when computing the article score, and so articles are explored more while their number
of views is still low.

I put an emphasis on building a plug-and-play platform that can be easily be connected
to any web application. For this, I identify the main algorithmic components, and implement
them as part of an API. While the architectural details are presented in Section 5-2, I describe
here the logical structure of the algorithm.

There are two main components needed to implement the UCB logic, which are imple-
mented as separate API entry points. The first one, described in Algorithm 5-1, decides which
article to serve (in this case, to display it in the top story position), based on the available
articles, specified by their numerical identifiers. The second component is straight-forward,

Master of Science Thesis Andrei Oghină

42 Detecting engaging stories in a mobile setting

and only has to increment the number of clicks stored for an article, when a user visits it
coming from the top story position.

Algorithm 5-1 Get_Headline(ids, alpha)
Input: array of article identifiers ids, parameter alpha
play_aid← 0 {Initialize the article identifier to be served}
max_ucb← 0 {Initialize the maximum upper confidence bound value}
for aid ∈ ids do
a_views← get_views(aid)
a_clicks← get_clicks(aid)
if a_views > 0 then
ctr ← a_clicks/a_views
ucb← ctr + alpha/

√
a_views

if ucb > max_ucb then
play_aid← aid
max_ucb← ucb

end if
else
play_aid← aid {If the article doesn’t have any views, display it at least once}
break

end if
end for
increment_views(play_aid, 1)
return play_aid

Based on the numerical identifiers of the available articles, the algorithm proceeds to
iterate through these identifiers, and computes for each article its current click-through rate
and upper confidence bound score. Unless there is an article that has no views at all (in which
case, that article is served to initialize its score), the article with the highest UCB value is
returned. Also, the number of views associated with the returned article is incremented.

5-2 Experimental setup

In this section, I first describe the mobile website used to perform the experiments. Then,
I present the testing platform, including the architecture of the web service used to integrate
the upper confidence bound serving scheme with the mobile website.

5-2-1 Telegraaf Privé

De Telegraaf ("The Telegraph") is the largest Dutch daily morning newspaper, and its
website, telegraaf.nl, is one of the top news websites in the country.1 A prominent section of
the website features content supplied by the gossip-magazine Privé ("Private").

1http://en.wikipedia.org/wiki/De_Telegraaf

Andrei Oghină Master of Science Thesis

http://en.wikipedia.org/wiki/De_Telegraaf

5-2 Experimental setup 43

The telegraaf.nl website has a mobile version designed for smartphones with high-resolution
touchscreens. This version of the website has the same structure as the main website, and, as
such, it also contains the Privé section. I run experiments within this section of the mobile
version of telegraaf.nl, by reordering articles and measuring their performance in the top story
position, in term of click-through rate. The layout of this section is presented in Figure 5-1.

Figure 5-1: The Privé section of the telegraaf.nl mobile website. The top story has the title
"Wijk verdeeld over Barbie".

Here, the top story position is highlighted with thick red lines, and features the biggest
font size for the title. The goal is to maximize the click-through rate on this position. To
achieve this, I devise a method to control which story is placed here, from the pool of available
articles.

An important aspect is that the editorial team has access to powerful tools that track
the performance of articles in real time, across all positions. This allows them to make
well informed decisions on what articles to highlight. They can learn which articles perform
well from other positions, and only then place them as top stories. This gives a significant
advantage to the editorial team over our method, which uses the same position for both
learning how all articles perform, and exploiting the ones that perform best.

5-2-2 Architecture

The architecture of the serving algorithm is designed as a web service, called here the
bandits API. This application is hosted independently of the tested news website, in a cloud-

Master of Science Thesis Andrei Oghină

44 Detecting engaging stories in a mobile setting

based platform as a service (PaaS) named AppFog.2 The API has two main entry points:
one used to retrieve the article to serve based on a sequence of available article identifiers
(implements Algorithm 5-1), and the second one is used to increment the number of clicks on
an article.

Plugging the bandits API to the Telegraaf Privé mobile website has to be done with
minimal tampering of the website’s codebase. I use a client-based solution, which doesn’t
interfere with the back-end logic of the application. Once the main page is loaded, a Javascript
function exploits the Document Object Model (DOM) structure of the page to extract a list
of all available article identifiers, and performs an AJAX call to the Bandits API. The API
runs Algorithm 5-1 and replies with the identifier of the article to place as top story. Finally,
using DOM manipulation, a switch is performed between the article in the top story position,
and the one specified by the Bandits API. This process should happen fast enough so the user
doesn’t notice the switch - if it takes too long, a timeout event is triggered and logged, which
prevents the article switch. The action flow for testing the serving scheme, together with the
architecture of the service, are presented in Figure 5-2.

Figure 5-2: The architecture of the bandits API, together with the information flow between the
involved components, when a user visits the main page; the numbers in brackets reveal the order
of interactions.

Here, the distinction between the website architecture and the bandits API is made clear.
On one hand, there are separate components for the mobile browser running on the user’s
phone and the server architecture responsible for hosting the news website (here, presented
as just one component: the news web server). Then, there is the bandits API, consisting of
a web server and a database server, which uses the Redis in-memory key-value store. The

2https://www.appfog.com/

Andrei Oghină Master of Science Thesis

https://www.appfog.com/

5-3 Results and analysis 45

communication is performed on the client-side, using Javascript code which runs in the mobile
browser and performs asynchronous requests to the bandits API.

Only the interaction with the main page is presented in Figure 5-2, for retrieving the
identifier of the top story. The call to the second API entry point happens over the same
architecture, and in a similar way: when an article is visited as a result of a click on the top
story position, the browser makes a request to the bandits API specifying the identifier of the
clicked article, which leads to incrementing to stored number of clicks for that day and for
one of the two user groups, as described in the following section.

5-2-3 Data collection

The data collection is performed after splitting the visitors in two groups, by assigning
them a random number, and storing it as a cookie on their computer. If this number is even,
then the top story is switched based on the UCB serving algorithm. If the number is odd,
the original top story, as it is set by the editorial team, is left unchanged. In both cases, a
parameter is added to the top story position link url, so that the article visit can be identified
as coming from this position.

Page views and clicks are counted for each user group for each day, so I can compute
daily click-through rates, and compare the results. The experiment is carried out during a 7
day period, between January 24 and January 30, 2013. To produce a static baseline, I use
a similar approach to the one described in Section 3-3-2: I run a random serving scheme for
two days (January 31 and February 1, 2013), and compute the average click-through rate for
this period.

5-3 Results and analysis

The random serving scheme used to select the top stories for two consecutive days gen-
erates click-through rates of 0.073 and 0.069 respectively. I consider the average of 0.071 as
a static baseline. It is interesting to note that this value is slightly higher, but close to the
static baseline used in the Nu&Straks experiments (0.067). This can be interpreted as a first
indication that the mobile setup doesn’t have a substantial impact on the click-through rates
of the top story position. The small increase may be caused by the lack of alternative links
on the smaller mobile layout, but this would require further research to attest.

The click-through rates achieved by the two methods are presented in Figure 5-3. Despite
the editors having access to state of the art tools for monitoring article performance, and
having the advantage of being able to use other position to learn which articles perform best
before placing them as top stories, the upper confidence bound algorithm still outperforms the
manual approach by 20%. It is important to note that the algorithm does so while using the
same position for both exploiting high-performing articles, but also exploring the potential of
all new articles, as they become available. The increase over the static baseline is a whopping
108%.

Master of Science Thesis Andrei Oghină

46 Detecting engaging stories in a mobile setting

Figure 5-3: Click-through rates on the top story position, when controlled by the editors (Manual)
and the upper confidence bound algorithm (UCB).

While the bandit method clearly outperforms the manual approach in 5 out of the 7 tested
days, in one of the other two remaining days the performance is reversed, and in the other
one they produce similar click-through rates. Before providing possible explanations for this
behaviour, I test if the overall lift in click-through rate is indeed statistically significant.

I use an unpaired t-test to compare the average click-through rates of the two methods.
For this, based on the experimental results, I compute the values in Table 5-1.

Table 5-1: Measures used for computing statistical significance.

Group Sample size Sample mean Sample standard deviation
Manual (1) 7 0.123 0.020
UCB (2) 7 0.148 0.029

Since the variances have very close values, an unpaired t-test is indeed applicable.3 The
sample sizes for the two groups are noted n1 and n2, the sample means x̄1 and x̄2, and the
samples standard deviations s1 and s2. Then, in order to compute the T-statistic (Equation 5-
1), I need to compute the pooled standard deviation sp (Equation 5-3) and the standard error
SE(x̄1 − x̄2) (Equation 5-2).

T = x̄1 − x̄2
SE(x̄1 − x̄2) (5-1)

3http://mlsc.lboro.ac.uk/resources/statistics/Unpairedttest.pdf

Andrei Oghină Master of Science Thesis

http://mlsc.lboro.ac.uk/resources/statistics/Unpairedttest.pdf

5-3 Results and analysis 47

SE(x̄1 − x̄2) = sp

√
1
n1

+ 1
n2

(5-2)

sp =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2 (5-3)

After performing the calculations, the value of the T-statistic is 1.879. Under the null-
hypothesis, the statistic follows a t-distribution with 12 (n1 + n2 − 2) degrees of freedom.
Using tables of the t-distribution I determine that the p-value p < 0.05. Therefore, the
probability of the improvement in click-through rate happening by chance is less than 5%, so
there is strong evidence that the UCB algorithm performs better than the editorial team in
generating a higher click-through rate on the top story position.

Several reasons could explain why, during day 4, the manual approach achieved a higher
click-through rate. First, if the editorial team constantly monitors the performance of articles
and always places as top story only the best performing ones (based on other positions), than
this approach is likely to beat the upper confidence bound algorithm in its current incarnation,
because the algorithm also has to explore all new articles in the same position. It could also
be the case that a high-performing article is missed by the algorithm. For instance, if the
article doesn’t perform well initially, its score remains low, and it may not be sufficiently
explored later on, to detect a possible change in performance. Therefore, if for whatever
reason, a poorly performing article becomes highly attractive some time after its publication,
the algorithm may not detect the change.

Master of Science Thesis Andrei Oghină

48 Detecting engaging stories in a mobile setting

Andrei Oghină Master of Science Thesis

Chapter 6

Conclusions and future work

In this work, I investigated the potential of content-agnostic, online reinforcement learning
methods to increase user engagement on medium-sized news websites. The upper confidence
bound algorithm achieved best results for this task, boosting a 92% lift in click-through rate
against a most recent article serving scheme, and a 45% increase over the best performing
existing method used on the tested website. These high lifts in click-through rate validate the
potential of such methods to significantly benefit not only top-tier portals, such as Yahoo!,
but also medium-sized news websites.

Generating more clicks on the top story position is the primary, easily measurable effect
of using such methods. But second order effects, such as improving user satisfaction and
return rates, can prove even more beneficial, by increasing the number of total visits, and
consequently producing even more clicks on the entire website. More visits and more clicks
usually also means more revenue, depending on the company’s business model. These sec-
ondary effects are harder to measure and can be an interesting avenue for future work: there
are many factors that play a role in user satisfaction and return rates, and it can be very hard
to isolate them.

Testing different methods for clustering users based on their click histories allowed me to
observe a segment of young females with distinctive topic preferences. However, the demo-
graphics of the tested website were already heavily skewed towards a young, female popu-
lation, making the potential gains of a segmented learning approach inapplicable, especially
under limited traffic conditions. This comes as an interesting lesson, highlighting the costs
and limitations of news personalization. However, testing other hybrid approaches besides
this segmented learning algorithm, or experimenting on a website with a more general audi-
ence, could eventually yield improvements over the unsegmented approach, making it another
potentially interesting research route.

The upper confidence bound algorithm proves to be medium-invariant, as it significantly
outperforms an informed manual approach when tested on a mobile news website. The 20%
lift in click-through rate, when comparing to the manual approach, while being high, is lower
than in the case of the desktop website tested previously. On the other hand, when compared

Master of Science Thesis Andrei Oghină

50 Conclusions and future work

to the static baseline of a random serving scheme, the lift is higher in the mobile setting.
Several reasons may contribute to this difference, such as different layouts (on the mobile
website, there are fewer distractions towards other links), and the fact that the editorial team
of the mobile website has access to advanced performance monitoring tools, thus making
better informed decisions on article placements.

Besides investigating second order effects of increasing the top story performance or testing
new hybrid approaches, this work could inspire a wide range of other research directions. One
is to apply similar methods to completely different products which share similar traits, such
as online advertising platforms. Increasing click-through rates there by quickly detecting and
displaying the best performing advertisements would have an immediate impact on revenues,
and presumably would have a positive impact on user experience also.

This work focused on optimizing the performance of one story position, which is used for
both exploring new articles and exploiting the good performing ones. Another direction would
be to investigate how these methods generalize to more positions, if one has access to control
the content of several placements on a page. For instance, I can imagine a scenario where a
less prominent position is used for learning, while the top story position is only used to exploit
the best articles. Such a scenario could be more acceptable from an editorial point of view,
but, to maintain optimality, the serving algorithms would probably need to be adjusted.

In a world where online user interaction data is becoming more easily available, I truly
believe there is still a huge untapped potential in using and learning from this information
to improve existing products, or even design and build entirely new ones. My work strives to
contribute to this endeavour, and I hope it will encourage others to apply content-agnostic,
online reinforcement learning methods for solving engagement optimization problems in a
variety of settings, as well as foster more research in this area.

Andrei Oghină Master of Science Thesis

Bibliography

Agarwal, D., Chen, B.-C., and Elango, P. (2009). Explore/exploit schemes for web content
optimization. In Proceedings of the 2009 Ninth IEEE International Conference on Data
Mining, ICDM ’09, pages 1–10, Washington, DC, USA. IEEE Computer Society.

Agarwal, D., Chen, B. C., Elango, P., Motgi, N., Park, S. T., Ramakrishnan, R., Roy, S., and
Zachariah, J. (2008). Online Models for Content Optimization. In Koller, D., Schuurmans,
D., Bengio, Y., Bottou, L., Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L., editors,
NIPS, pages 17–24. MIT Press.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47(2-3):235–256.

Carreira, R., Crato, J. M., Gonçalves, D., and Jorge, J. A. (2004). Evaluating adaptive
user profiles for news classification. In Proceedings of the 9th international conference on
Intelligent user interfaces, IUI ’04, pages 206–212, New York, NY, USA. ACM.

Chae, M. and Kim, J. (2004). Do size and structure matter to mobile users? An empirical
study of the effects of screen size, information structure, and task complexity on user
activities with standard web phones. Behaviour & Information Technology, 23(3):165–181.

Das, A. S., Datar, M., Garg, A., and Rajaram, S. (2007). Google news personalization:
scalable online collaborative filtering. In Proceedings of the 16th international conference
on World Wide Web, WWW ’07, pages 271–280, New York, NY, USA. ACM.

Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., Gupta, S., He, Y.,
Lambert, M., Livingston, B., and Sampath, D. (2010). The youtube video recommendation
system. In Proceedings of the fourth ACM conference on Recommender systems, RecSys
’10, pages 293–296, New York, NY, USA. ACM.

Good, N., Schafer, J. B., Konstan, J. A., Borchers, A., Sarwar, B., Herlocker, J., and Riedl, J.
(1999). Combining collaborative filtering with personal agents for better recommendations.
In Proceedings of the sixteenth national conference on Artificial intelligence and the eleventh
Innovative applications of artificial intelligence conference, AAAI ’99/IAAI ’99, pages 439–
446, Menlo Park, CA, USA. American Association for Artificial Intelligence.

Master of Science Thesis Andrei Oghină

52 BIBLIOGRAPHY

Hofmann, K., Whiteson, S., and de Rijke, M. (2013). Balancing exploration and exploitation
in listwise and pairwise online learning to rank for information retrieval. Information
Retrieval Journal.

Hofmann, T. (2004). Latent semantic models for collaborative filtering. ACM Transactions
on Information Systems, 22(1):89–115.

Indyk, P. and Motwani, R. (1998). Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory
of computing, STOC ’98, pages 604–613, New York, NY, USA. ACM.

Koren, Y. (2010). Collaborative filtering with temporal dynamics. Commun. ACM, 53(4):89–
97.

Lai, T. L. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances
in Applied Mathematics, 6(1):4–22.

Langford, J., Strehl, A., and Wortman, J. (2008). Exploration scavenging. In Proceedings
of the 25th international conference on Machine learning, ICML ’08, pages 528–535, New
York, NY, USA. ACM.

Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A contextual-bandit approach
to personalized news article recommendation. In Proceedings of the 19th international
conference on World wide web, WWW ’10, pages 661–670, New York, NY, USA. ACM.

Li, L., Chu, W., Langford, J., and Wang, X. (2011). Unbiased offline evaluation of contextual-
bandit-based news article recommendation algorithms. In Proceedings of the fourth ACM
international conference on Web search and data mining, WSDM ’11, pages 297–306, New
York, NY, USA. ACM.

Linden, G., Smith, B., and York, J. (2003). Amazon.com recommendations: Item-to-item
collaborative filtering. IEEE Internet Computing, 7(1):76–80.

Liu, J., Dolan, P., and Pedersen, E. R. (2010). Personalized news recommendation based
on click behavior. In Proceedings of the 15th international conference on Intelligent user
interfaces, IUI ’10, pages 31–40, New York, NY, USA. ACM.

Liu, T.-Y. (2009). Learning to rank for information retrieval. Foundations and Trends in
Information Retrieval, 3(3):225–331.

Meij, E., Weerkamp, W., and de Rijke, M. (2012). Adding semantics to microblog posts.
In Proceedings of the fifth ACM international conference on Web search and data mining,
WSDM ’12, pages 563–572, New York, NY, USA. ACM.

Minsky, M. (1954). Theory of neural-analog reinforcement systems and its application to the
brain-model problem. Princeton University.

Radlinski, F. and Joachims, T. (2007). Active exploration for learning rankings from click-
through data. In Proceedings of the 13th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, KDD ’07, pages 570–579, New York, NY, USA. ACM.

Andrei Oghină Master of Science Thesis

BIBLIOGRAPHY 53

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001). Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th international conference on World
Wide Web, WWW ’01, pages 285–295, New York, NY, USA. ACM.

Strehl, A. L., Langford, J., Li, L., and Kakade, S. (2010). Learning from logged implicit
exploration data. In NIPS, pages 2217–2225.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction (Adaptive
Computation and Machine Learning). The MIT Press.

Vinh, N. X., Epps, J., and Bailey, J. (2009). Information theoretic measures for clusterings
comparison: is a correction for chance necessary? In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML ’09, pages 1073–1080, New York,
NY, USA. ACM.

Master of Science Thesis Andrei Oghină

54 BIBLIOGRAPHY

Andrei Oghină Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	Acknowledgements

	Main Matter
	Introduction
	Contribution
	Overview

	Related Work
	Collaborative and content-based filtering
	Online models

	Detecting engaging stories
	Methods
	Multi-armed bandits
	Evaluation and tuning
	Existing methods

	Experimental setup
	Hyves Nu&Straks
	Architecture
	Data collection

	Results and analysis
	Tuning
	Baseline
	-greedy and UCB

	Clustering visitors and news personalization
	Methods
	Clustering
	Evaluation
	Segmented UCB

	Experimental setup
	User demographics
	Active users and click history overview
	Limitations

	Results and analysis
	Segmented UCB based on median age
	Clustering
	Segmented UCB based on clusters insight

	Detecting engaging stories in a mobile setting
	Methods
	Experimental setup
	Telegraaf Privé
	Architecture
	Data collection

	Results and analysis

	Conclusions and future work

	Appendices
	Back Matter
	Bibliography

